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Data processing workflow 

Typical analyses of high-throughput 

sequencing data usually begin with one or 

more FASTQ file(s) of deeply-sequenced 

samples (see the next slide for a glossary of 

file formats).  

 

 

After a first quality control using FASTQC, 

the reads are aligned to the reference 

genome, e.g. using Bowtie (PMID: 

22388286) or BWA (PMID: 20080505). 

deepTools can then be used to assess the 

quality of the aligned reads with 

bamCorrelate, bamFingerprint and 

computeGCbias. 

 

 

Following the quality checks, most read-

related information is not required for 

subsequent analyses. These are instead 

based on the coverage values along the 

genome. 

The deepTools modules bamCompare and 

bamCoverage calculate those read 

coverages that will be stored in bigWig (or 

bedGraph) format. These files are very 

useful for data sharing, storage, display in 

Genome Browsers and efficient down-

stream analyses. The tools offer multiple 

parameters to normalize for sequencing 

depth, background reads and GC bias so 

that different samples can be faithfully 

compared to each other. 

Once we are satisfied by the quality checks , we use the 

coverage files to generate heatmaps and average profiles, 

analyzing and interpreting the processed data. 



Overview of deepTools modules 

tool name type output files application 

bamCorrelate QC  clustered heatmap  calculate the correlation between read 

coverages 

bamFingerprint  QC  xy-plot  assess the enrichment strength of a ChIP 

sample 

computeGCBias QC box plot, xy-plot  calculate expected and observed GC 

distribution of reads 

correctGCBias norm.  aligned reads  obtain GC-corrected read file 

bamCoverage norm.  continuous profile  obtain normalized read coverage for a single 

sample 

bamCompare norm.  continuous profile  normalize 2 BAM files to each other with a 

mathematical operation of choice (fold 

change, log2(ratio), sum, difference) 

profiler  visual. xy-plot (``meta-profile'')  generate average profiles of read coverage 

for genome regions 

heatmapper visual.  unclustered heatmap  display individual read coverages for genome 

regions of interest 

The individual tools take care of the different workflow phases. 

 

Every module can be used completely independent of the others, i.e. 

if a user already has downloaded a bigWig file, this can directly be 

used to plot heatmaps and average plots. 

 

All tools can be used to export the data matrix underlying any figure. 



Glossary of file formats 

name explanation 

BAM 
 compressed, binary file format (complement to SAM), not “human-readable” 

 the common output file format of the most popular read aligners such as bowtie2 
(Langmead & Salzberg (2012) Nat Methods) 

 each line corresponds to one mapped read with many additional information, e.g. about 
its mapping quality, its sequence, its location in the genome etc.  

 highly recommended format for storing raw data 
 

BED 
 text file  

 used to store genomic intervals, e.g. genes, peak regions etc.  

 for deepTools, the first 3 columns are important: chromosome, start position of the region, end 
position of the genome  

 

bedGraph 
 text file  

 similar to a bed file, except that it is limited to 4 columns and 4th column must be a 
numeric value, e.g. a coverage score  

 

bigwig 
 binary version of a bedGraph file  

 usually contains 4 columns: chromosome, start of genomic bin, end of genomic bin, 
score   

 the score can be anything, e.g. an average read coverage  
 

FASTA 
 text file 

 commonly used to store DNA or protein sequences 

FASTQ 
 text file 

 common output file format of Illumina sequencers 

 contains raw read information (e.g. base calls, sequencing quality measures etc.), but no 
information about where in the genome the read originated from 

SAM 
 text file  

 same (uncompressed) content as BAM file 
 

2bit 
 compressed file format for DNA sequences 

 



1. Visualization of data 
quality 

diagnostic plots of aligned 
reads 



Basic correlation of samples 

• this should be the starting point of any analysis 

• results of the correlation analysis can: 

– identify sample swaps 

– raise awareness for possible biases  

– be useful to assess the similarity of replicates, similarity with 

published data etc. 

- there is no limit on the number of files to be compared to each other 

- Pearson or Spearman correlation can be computed 

deepTools: bamCorrelate 

samples with 

similar coverage 

profiles should 

cluster together 

high 

correlation 

for replicates 

anti-correlation 

for repressive 

and active 

histone marks 



Check for GC bias 

Sample 1 Sample 2 Sample 3 

bad example 
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Sample 4 Sample 5 Sample 6 

good example 

dramatic deviations 

from (obs/exp) = 1 

when Sample 1 should be compared with 

Sample 3, we strongly recommend to 

use deepTools to correct for GC bias 

the majority of the genome is 

covered equally, regardless of 

the GC content 

GC correction is not 

necessary 

deepTools: computeGCbias (to calculate the bias) 

deepTools: correctGCbias (to correct the bias) 



Assessing ChIP strength 

input 

H3K4me3 

input 

H3K27me3 

This plot is typical for 

narrow, strong enrichments 

– which indicates that the 

H3K4me3 profile matches 

the expectations. 

 

Input and ChIP are very 

well separated, subsequent 

normalization via the SES 

can be applied (using 

bamCompare) 

when counting the reads contained in 97% of 

all genomic bins, only 55% of the maximum 

number of reads are reached, i.e. 4% of the 

genome contain a very large fraction of reads 

As H3K27me3 is a mark that 

yields broad domains instead 

of narrow peaks, this plot does 

not necessarily indicate a 

failure of the experiment, but it 

demonstrates why the SES 

method should not be used for 

normalization in this case 

compared to H3K4me3, input and ChIP 

cannot be distinguished as easily here 

localized histone mark broad histone mark 

deepTools: bamFingerprint on input and ChIP sample 



2. Visualizing and 
comparing different(ly) 

deeply-sequenced samples 

how to generate normalized 
continuous signal profiles and 

use them in Genome 
Browsers, heatmaps and 

average plots 



Generating signal profiles of 

individual samples 

If the BAM file contains reads from paired-end sequencing, reads are extended to the 

exact fragment length. For matel-ess and single-end reads, the user must specify the 

average fragment length that was selected prior to deep-sequencing (usually 200 bp). In 

addition, the user decides about the size of the genome bins for which the fragment 

coverage should be determined (default is 50 bp; the smaller the bin size, the bigger the 

resulting file). bamCoverage first calculates all the number of fragments that overlap with 

each bin in the genome. Bins with zero counts are skipped, i.e. not added to the output 

file. The resulting read counts can be normalized using either a given scaling factor, the 

RPKM formula or to get a 1x depth of coverage (RPGC).  

bam bigwig 

Name Details 

Reads per 

genomic content 

(RPGC) 

This method will normalize a sample to 1x genome-wide coverage 

using the assumption: 

normalized bin count/1x coverage = real bin count / real coverage 

Therefore, the normalized bin count is calculated as follows: 

real bin count * genome size / genome-wide coverage 

Reads per 

kilobase per 

million reads 

(RPKM) 

This method is similar to the normalization used for RNA-seq data. 

The formula is as follows: 

number of reads per bin/(number of million mapped reads * bin 

length in kbp) 

The resulting numbers are usually very small. 

Total read count 

normalization 

When comparing two BAM files the simplest way to account for 

differences in sequencing depth is to divide the coverage by the 

total number of sequenced reads. 

signal extraction 

(SES) 

Based on a method proposed by {Diaz, 2012 #8}. Not 

recommended for broad marks or when bamFingerprint indicates 

that the ChIP and input sample have very similar read coverages.  

deepTools: bamCoverage w ith output format “ bigw ig”  



Browsing the coverage profiles 

We strongly recommend to spend considerable time with the visual inspection of 

normalized coverage profiles using a Genome Browser, e.g. IGV or the UCSC browser. 

As bigWig files are much smaller than BAM files, they can easily be uploaded.  

 

The visual inspection should come before any other major down-stream analysis. 

It helps to “get a feeling for the data”, for example: 

- identifying regions with extremely high or no coverage at all 

- assess whether the distribution of the signal (broad vs. narrow enrichments) 

matches the expectation 

- checking candidate regions where one expects (no) signal 

- generate hypotheses regarding the pattern of the signal, e.g. enrichments at 

promoters or along gene bodies etc. 

Famous example of Genome Browser screenshots illustrating the different combinations of the 
permissive H3K4me3 and the restrictive H3K27me3 marks in ES and differentiated cells. Figure taken 
from Mikkelsen et al. (2007) Nature. 

deepTools: bamCoverage or bamCompare w ith output format “ bigw ig” , 

then use a external Genome Brow ser, e.g. from IGV or UCSC 



Understanding signals within the genome I 

Example: Assessing the ChIP-seq signal of RNA Polymerase II (Pol II) at the 

transcription start site (TSS) of (Drosophila) genes 

sort TSS 

according to 

the Pol II signal  

now it is clear, that ca. 1/3 

of TSS have very high 

signals, ¼  have 

intermediate Pol II signals 

and 50 % have no signal 

separate the 

genes into 

different groups 

based on their 

chromosome 

the numbers of TSS with 

strong and weak Pol II 

signal seem to be similar 

between the different 

chromosomes 

The unsorted  heatmap 

displays the Pol II signals 

around the TSS for all 

genes. The strongest 

signals seem to surround 

the TSS. 

Heatmaps are very useful to get an overall feeling for the signal distribution. 

deepTools: computeMatrix w ith “ reference-point”  and w ith or w ithout sort ing (advanced 

options), supplying either one f ile for all genes or three f iles for genes on each 

chromosome separately 

deepTools: heatmapper w ith output f ile from computeMatrix 



Understanding signals within the genome II 

Summary plots (or average plots or “meta-gene” plots) summarize the 
heatmap findings. 

plotted separately, the 

signals look very similar 

 

note that the shaded region 

indicates the spread of the 

standard deviation 

plotted within the same 

frame, there is an indication 

that Pol II might be more 

strongly enriched on the X 

chromosome than on 

autosomes (which is in line 

with current theories about 

the male X of fruit flies) 

deepTools: computeMatrix w ith “ reference-point”  

deepTools: profiler w ith output from computeMatrix, choosing 

dif ferent plot types (advanced options) 



3. More examples of 
insightful heatmaps and 

average plots 



Comparing signal differences 

for example: 

• ChIP vs. input 

• wild type vs. knock-out 

• day 1 vs. day 2 

Example: Difference in Pol II signal in WT vs. 2 knock-down (kd) 
conditions (from PMID: 22723752) 

kd 1 kd 2 

visible: 

kd 1 leads to stronger 

changes than kd 2 

deepTools: bamCompare w ith knock-out and w ildtype sample, using the “ dif ference”  

instead of default  log2rat io option 

deepTools: computeMatrix w ith reference-point, follow ed by deepTools: heatmapper 



Distinct signals of histone marks 

around gene starts 

H3K4me3 H3K4me1 H3K27ac H3K36me H3K27me3 H3K9me3 

• all genes are sorted according to H3K4me3 signal abundance 

• clearly, H3K4me1, H3K27me3 and H3K9me3 are depleted 

(red) where H3K4me3 and H3K27ac are present (blue) 

broad enrichments narrow enrichments 

deepTools: bamCompare for each sample (ChIP vs. input) 

deepTools: computeMatrix on normalized H3K4me3 bigWig f ile, w ith default  sort ing and 

saving the order of the regions to a BED f ile (advanded output options), this BED f ile is 

then used for deepTools: computeMatrix on all other normalized sample f iles choosing 

“ no sort ing”  

f inally, deepTools: heatmapper is run on all computeMatrix results w ithout sort ing 



Any value contained in a bigWig file 

can be visualized 

% GC methylation at 

arbitrary non-gene regions 

Motif presence 

hyper-

methylated 

hypo-

methylated 

for the motif of interest, 

the chosen regions are 

highly enriched  around 

their center points 

% GC methylation 

along gene bodies 

the raw read distribution of this 

sample largely reflects the GC content 

GC content & raw reads 


