
deepTools

Table of content

1. Why we built deepTools
2. How we use deepTools
3. What deepTools can do
4. Tool details

Quality controls of aligned reads
bamCorrelate
computeGCbias
bamFingerprint

Normalization and bigWig generation
correctGCbias
bamCoverage
bamCompare

Visualization: heatmaps and summary plots
5. Glossary

Why we built deepTools
The main reason why deepTools was started, is the simple fact that in 2011 we could not find tools that met all our needs for NGS data analysis.
While there were individual tools for separate tasks, we wanted software that would fulfill all of the following criteria:

efficiently extract reads of BAM files and perform various computations on them
turn BAM files of aligned reads into bigWig files using different normalization strategies
make use of multiple processors (speed!)
generation of highly customizable images (change colours, size, labels, file format etc.)
enable customized down-stream analyses which requires that every data set that is being produced can be stored by the user
modular approach - compatibility, flexibility, scalability (i.e. we can add more and more modules making use of established methods)

The flow chart below depicts the different tool modules that are currently available within deepTools (deepTools modules are written in bold
red and black font). For more information on a typical analysis pipeline, read the text below and What deepTools can do.

#overview

How we use deepTools
The majority of samples that we handle within our facility come from ChIP-seq experiments, therefore you will find many examples from ChIP-
seq analyses. This does not mean that deepTools is restricted to ChIP-seq data analysis, but some tools, such as bamFingerprint specifically
address ChIP-seq-issues. (That being said, we do process quite a bit of RNA-seq, other -seq and genomic sequencing data using deepTools, too.)

Here are slides that we used for teaching at the University of Freiburg that contain more details on the deepTools usage and aims.

As shown in the flow chart above, our work usually begins with one or more [FASTQ][] file(s) of deeply-sequenced samples. After a first quality
control using FASTQC, we align the reads to the reference genome, e.g. using bowtie2.
We then use deepTools to assess the quality of the aligned reads:

1. Correlation between BAM files (bamCorrelate). This is a very basic test to see whether the sequenced and aligned reads meet your
expectations. We use this check to assess the reproducibility - either between replicates and/or between different experiments that might
have used the same antibody/the same cell type etc. For instance, replicates should correlate better than differently treated samples.

2. GC bias check (computeGCbias). Many sequencing protocols require several rounds of PCR-based amplification of the DNA to be
sequenced. Unfortunately, most DNA polymerases used for PCR introduce significant GC biases as they prefer to amplify GC-rich
templates. Depending on the sample (preparation), the GC bias can vary significantly and we routinely check its extent. In case we need to
compare files with different GC biases, we use the correctGCbias module to match the GC bias. See the paper by Benjamini and Speed for
many insights into this problem.

3. Assessing the ChIP strength. This is a QC we do to get a feeling for the signal-to-noise ratio in samples from ChIP-seq experiments. It
is based on the insights published by Diaz et al..

Once we're satisfied by the basic quality checks, we normally convert the large BAM files into a leaner data format, typically
bigWig. bigWig files have several advantages over BAM files that mainly stem from their significantly decreased size:

useful for data sharing & storage
intuitive visualization in Genome Browsers (e.g. [IGV][])
more efficient downstream analyses are possible

The deepTools modules bamCompare and bamCoverage do not only allow the simple conversion from BAM to bigWig (or bedGraph for that

https://raw.github.com/fidelram/deepTools/master/examples/flowChart_BAMtoBIGWIG.png
https://docs.google.com/file/d/0B8DPnFM4SLr2UjdYNkQ0dElEMm8/edit?usp=sharing
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://nar.oxfordjournals.org/content/40/10/e72
http://www.degruyter.com/view/j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml

matter), the main reason why we developed those tools was that we wanted to be able to normalize the read coverages so
that we could compare different samples despite differences in sequencing depth, GC biases and so on.

Finally, once all the files have passed our visual inspections, the fun of downstream analyses with heatmapper and profiler can begin!

deepTools details
deepTools consists of a set of modules that can be used independently to work with mapped reads. We have subdivided such tasks into quality
controls (QC), normalizations and visualizations.

Here's a concise summary of the tools - for more information, please read below.

tool type input files
main output

file(s)
application

bamCorrelate QC 2 or more BAM clustered heatmap
Pearson or Spearman correlation between read
distributions

bamFingerprint QC 2 BAM 1 diagnostic plot assess enrichment strength of a ChIP sample

computeGCbias QC 1 BAM 2 diagnostic plots calculate the exp. and obs. GC distribution of reads

correctGCbias QC
1 BAM, output
from
computeGCbias

1 GC-corrected BAM
obtain a BAM file with reads distributed according
to the genome's GC content

bamCoverage normalization BAM bedGraph or bigWig
obtain the normalized read coverage of a single
BAM file

bamCompare normalization 2 BAM bedGraph or bigWig
normalize 2 BAM files to each other using a
mathematical operation of your choice (e.g.
log2ratio, difference)

computeMatrix visualization 1 bigWig, 1 BED
zipped file, to be used
with heatmapper or
profiler

compute the values needed for heatmaps and
summary plots

heatmapper visualization
computeMatrix
output

heatmap of read
coverages

visualize the read coverages for genomic regions

profiler visualization
computeMatrix
output

summary plot ("meta-
profile")

visualize the average read coverages over a group
of genomic regions

QC of aligned reads

bamCorrelate
This tool is useful to assess the overall similarity of different BAM
files. A typical application is to check the correlation between
replicates or published data sets.

What it does

The tool splits the genomes into bins of a given length. For each bin,
the number of reads found in each BAM file is counted and a
correlation of the read coverages is computed for all pairs of BAM files.

Important parameters

bamCorrelate can be run in 2 modes: bins and bed.

In the bins mode, the correlation is computed based on randomly sampled bins of equal length. The user has to specify the number of
bins. This is useful to assess the overall similarity of BAM files,
but outliers, such as heavily biased regions have the potential to skew the correlation values.

QC#wiki-bamCorrelate
QC#wiki-bamFingerprint
QC#wiki-computeGCbias
QC#wiki-correctGCbias
Normalizations#wiki-bamCoverage
Normalizations#wiki-bamCompare
Visualizations#wiki-computeMatrix
Visualizations#wiki-heatmapper
Visualizations#wiki-profiler

In the BED-file options, the user supplies a list of genomic regions in BED format in addition to (a) BAM file(s). bamCorrelate subsequently uses
this list to compare the read coverages for these regions only. This can be used, for example, to compare the ChIP-seq coverages of two
different samples for a set of peak regions.

Output files:

diagnostic plot the plot produced by bamCorrelate is a clustered heatmap displaying the values for each pair-wise correlation, see below
for an example
data matrix (optional) in case you want to plot the correlation values using a different program, e.g. R, this matrix can be used

Example Figures

Here is the result of running bamCorrelate. We supplied four BAM files that were generated from 2 patients - for each patient, there is an input
and a ChIP-seq sample (from GSE32222).

You can supply any number of BAM files that you would like to compare. In Galaxy, you simply have to click "Add BAM file", in the command
line you simply list all files one after the other (you can give meaningful name via the --label option).

Here's the command that was used with the command line version:

$ deepTools-1.5.2/bin/bamCorrelate bins --fragmentLength 200 --bamfiles \
GSM798383_SLX-1201.250.s_4.bwa.homo_sapiens_f.bam \
GSM798384_SLX-1881.334.s_1.bwa.homo_sapiens_f.bam \
GSM798406_SLX-1202.250.s_1.bwa.homo_sapiens_f.bam \
GSM798407_SLX-1880.337.s_8.bwa.homo_sapiens_f.bam \
--labels "ChIP p1" "ChIP p2" "Input p1" "Input p2" \
--plotFile /eva_data/deeptools_manual/bamCorrelate_bad2.pdf \
--corMethod pearson

Here is another example of ChIP samples where H3K27ac was ChIPed by the same experimentator for different cell populations while
H3K27me was performed with the same antibody, but at different times. You can see that the correlation between the K27ac replicates is much
higher than for the H3K27me3 samples, however, for both histone marks, the ChIP-seq experiments are more similar to each other than to the
other ChIP or to the input. In fact, the signals of K27ac and K27me3 are almost not correlated at all which supports the notion that their
biological function is also quite opposing.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32222
https://raw.github.com/fidelram/deepTools/master/examples/QC_bamCorrelate_humanSamples.png

computeGCbias
This tool computes the GC bias using the method proposed by Benjamini and Speed (see below for more explanations).

What it does

The basic assumption of the GC bias diagnosis is that an ideal sample should show a uniform distribution of sequenced reads across the genome,
i.e. all regions of the genome should be similarly well sequenced.

computeGCbias estimates how many reads with what kind of GC content one
should have sequenced given an organism's genome GC content. The calculations are based on the methods published by Benjamini and Speed.
The tool first determines how many regions the specific reference genome contains for each amount of GC content,
i.e. how many regions in the genome have 50% GC (or 10% GC or 90%
GC or...). For this, it samples a large number of equally sized genome bins
and counts how many times we see a bin with 50% GC (or 10% GC or 90%
or...). These expected values are independent of any sequencing, but they do depend on the respective reference genome.
This means, that the expected values will, of course, differ between mouse and fruit fly due to their genome's
different GC contents, but it also means that strong biases in the reference genome assembly might lead to a false positive diagnosis of GC bias.

After the expected values, the tool samples the BAM file of sequenced reads. Instead of noting how many genomic regions
there are per GC content, we now count the reads per GC content.

Output files

Diagnostic plot
box plot of absolute read numbers per genomic GC bin
x-y plot of observed/expected read ratios per genomic GC content bin

https://raw.github.com/fidelram/deepTools/master/examples/QC_bamCorrelate_RoadmapData.png
http://nar.oxfordjournals.org/content/40/10/e72
http://nar.oxfordjournals.org/content/40/10/e72

Data matrix
to be used for GC correction with correctGCbias

What the plots tell you

In an ideal sample without GC bias, the ratio of observed/expected values
should be close to 1 for all GC content bins.

However, due to PCR (over)amplifications, the majority of ChIP samples usually shows a significant bias towards reads with high GC content
(>50%) and a depletion of reads from GC-poor regions.

Example figures

Let's start with an ideal case. The following plots were generate with computeGCbias using simulated reads from the Drosophila genome.

As you can see, both plots do not show enrichments or depletions for specific GC content bins.

Now, let's have a look at real-life data from genomic DNA sequencing. Panels A and B can be clearly distinguished and the major change that
took place between the experiments underlying the plots was that the samples in panel A were prepared with too many PCR cycles and a
standard polymerase whereas the samples of panel B were subjected to very few rounds of amplification using a high fidelity DNA polymerase.

https://raw.github.com/fidelram/deepTools/master/examples/GC_bias_simulated_reads_2L.png

bamFingerprint

What it does

This tool is based on a method developed by Diaz et al..
For factors that will enrich well-defined, rather narrow regions (e.g. transcription factors such as p300), the resulting plot can be used to assess
the strength of a ChIP, i.e. whether the signal of the enrichment can be clearly distinguished from the background.

The tool first samples indexed BAM files and counts all reads overlapping
a window (bin) of specified length. These counts are then sorted
according to their rank and the cumulative sum of read counts is
plotted.

Output files:

Diagnostic plot
Data matrix of raw counts (optional)

What the plots tell you

An ideal input with perfect uniform distribution of reads
along the genome (i.e. without enrichments in open chromatin etc.)
should generate a straight diagonal line. A very specific and strong
ChIP enrichment will be indicated by a prominent and steep rise of the
cumulative sum towards the highest rank. This means that a big chunk
of reads from the ChIP sample is located in few bins which corresponds
to high, narrow enrichments seen for transcription factors.

Example figures

Here you see three different fingerprint plots that we routinely generate to check the outcome of ChIP-seq experiments.
We chose these examples to show you how the nature of the ChIP signal (narrow and high vs. wide and not extremely high) is reflected in the
"fingerprint" plots. Please note that these plots go by the name of "fingerprints" in our facility because we fill that they help us tremendously in
judging individual files, but the idea underlying these plots came from Diaz et al.

https://raw.github.com/fidelram/deepTools/master/examples/QC_GCplots_input.png
http://www.degruyter.com/view/j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml
http://www.degruyter.com/view/j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml

Normalization of BAM files
deepTools contains 3 tools for the normalization of BAM files:

1. correctGCbias: if you would like to normalize your read distributions to fit the expected GC values, you can use the output from
computeGCbias and produce a GC-corrected BAM-file.

2. bamCoverage: this tool converts a single BAM file into a bigWig file, enabling you to normalize for sequencing depth.
3. bamCompare: like bamCoverage, this tool produces a normalized bigWig file, but it takes 2 BAM files, normalizes them for sequencing

depth and subsequently performs a mathematical operation of your choice, i.e. it can output the ratio of the read coverages in both files or
the like.

Here you can download slides that we used for teaching. They contain additional details about how the coverage files are generated and
normalized.

Table of Content

correctGCbias

https://raw.github.com/fidelram/deepTools/master/examples/QC_fingerprint.png
https://docs.google.com/file/d/0B8DPnFM4SLr2UjdYNkQ0dElEMm8/edit?usp=sharing
https://raw.github.com/fidelram/deepTools/master/examples/norm_IGVsnapshot_indFiles.png
#correctGCbias

bamCoverage
bamCompare

CorrectGCbias

What it does (uses output from computeGCbias)

This tool requires the output from computeGCBias to correct the given [BAM][] files according to the method proposed by Benjamini and
Speed. The resulting BAM files can be used in any downstream analyses, but be aware that you should not filter out duplicates from
here on.

output

GC-normalized BAM file

bamCoverage

What it does

Given a BAM file, this tool generates a bigWig or bedGraph file of fragment or read coverages. The way the method works is by first calculating
all the number of reads (either extended to match the fragment length or not) that overlap each bin in the genome. Bins with zero counts are
skipped, i.e. not added to the output file. The resulting read counts can be normalized using either a given scaling factor, the RPKM formula or
to get a 1x depth of coverage (RPGC).

output

coverage file either in bigWig or bedGraph format

Usage

Here's an exemplary command to generate a single bigWig file out of a single BAM file via the command line:

$/deepTools-1.5/bin/bamCoverage --bam corrected_counts.bam \
--binSize 10 --normalizeTo1x 2150570000 --fragmentLength 200 \
-o Coverage.GCcorrected.SeqDepthNorm.bw \
--ignoreForNormalization chrX

The bin size (-bs) can be chosen completely to your liking. The smaller it is, the bigger your file will be.
This was a mouse sample, therefore the effective genome size for mouse had to be indicated once it was decided that the file should be
normalize to 1x coverage.
Chromosome X was excluded from sampling the regions for normalization as the sample was from a male mouse that therefore contained
pairs of autosome, but only a single X chromosome.
The fragment length of 200 bp is only the fall-back option of bamCoverage as the sample provided here was done with paired-end
sequencing. Only in case of singletons will bamCoverage resort to the user-specified fragment length.
--ignoreDuplicates - important! in case where you normalized for GC bias using correctGCbias, you should absolutely NOT set this
parameter

Using deepTools Galaxy, this is what you would have done:

#bamCoverage
#bamCompare
https://github.com/fidelram/deepTools/blob/master/manual/QC.md#computeGCbias
http://nar.oxfordjournals.org/content/40/10/e72
http://deeptools.ie-freiburg.mpg.de/

bamCompare

What it does

This tool compares two BAM files based on the number of mappedreads. To compare the BAM files, the genome is partitioned into bins of equal
size, the reads are counted for each bin and each BAM file and finally, a summarizing value is reported. This value can be the ratio of the number
of reads per bin, the log2 of the ratio or the difference. This tool can normalize the number of reads on each BAM file using the SES method
proposed by Diaz et al. Normalization based on read counts is also available. If paired-end
reads are present, the fragment length reported in the BAM file is used by default.

output file

same as for bamCoverage, except that you now obtain 1 coverage file that is based on 2 BAM files.

Usage

Here's an example command that generated the log2(ChIP/Input) values via the command line.

$ /deepTools-1.5/bin/bamCompare --bamfile1 ChIP.bam -bamfile2 Input.bam --binSize 25 --fragmentLength 200 --missingDataAsZero no --ratio log2 --scaleFactorsMethod SES -o log2ratio_ChIP_vs_Input.bw

The Galaxy equivalent:

https://raw.github.com/fidelram/deepTools/master/examples/norm_bamCoverage.png
http://www.degruyter.com/view/j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml

Note that the option "missing Data As Zero" can be found within the "advanced options" (default: no).

like for bamCoverage, the bin size is completely up to the user
the fragment size (-f) will only be taken into consideration for reads without mates
the SES method was used for normalization as the ChIP sample was done for a histone mark with highly localized enrichments (similar to
the left-most plot of the fingerprint-examples

Some (more) parameters to pay special attention to

--scaleFactorsMethod (in Galaxy: "Method to use for scaling the largest sample to the smallest") - here you can choose how you would like
to normalize to account for variation in sequencing depths. We provide the simple normalization total read count or the more sophisticated
signal extraction (SES) method proposed by Diaz et al.. We recommend to use SES only for those cases where the distinction
between input and ChIP is very clear in the bamFingerprint plots. This is usually the case for transcription factors and sharply
defined histone marks such as H3K4me3.

--ratio (in Galaxy: "How to compare the two files") - here you get to choose how you want the two input files to be compared, e.g. by
taking the ratio or by subtracting the second BAM file from the first BAM file etc. In case you do want to subtract one sample from the
other, you will have to choose whether you want to normalize to 1x coverage (--normalizeTo1x) or to reads per kilobase (--
normalizeUsingRPKM; similar to RNA-seq normalization schemes)

https://raw.github.com/fidelram/deepTools/master/examples/norm_bamCompare_Gal.png
http://www.degruyter.com/view/j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml

Visualization
The modules for visualizing scores contained in bigWig files are separated into a tool that calculates the values
(computeMatrix) and two tools that contain many, many options to fine-tune the plots (heatmapper and profiler). In other words:
computeMatrix generates the values that are the basis for heatmapper and profiler.

computeMatrix
This tool summarizes and prepares an intermediary file containing
scores associated with genomic regions that can be used afterwards to
plot a heatmap or a profile.

Genomic regions can really be anything - genes, parts of genes, ChIP-seq peaks, favorite genome regions...
as long as you provide a proper file in BED or INTERVAL format. This tool can also be used to filter and sort regions

https://raw.github.com/fidelram/deepTools/master/examples/norm_bamCompare.png
https://raw.github.com/fidelram/deepTools/master/examples/flowChart_computeMatrixetc.png

according to their score.

As indicated in the plot above, computeMatrix can be run with either one of the two modes: scaled regions or reference point.

Please see the example figures down below for explanations of parameters and options.

Output files

obligatory: zipped matrix of values to be used with heatmapper and/or profiler
optional (can also be generated with heatmapper or profiler in case you forgot to produce them in the beginning):

BED-file of the regions sorted according to the calculated values
list of average values per genomic bin
matrix of values per genomic bin per genomic interval

heatmapper
The heatmapper depicts values extracted from the bigWig file for each genomic region individually.
It requires the output from computeMatrix and most of its options are related to tweeking the visualization only. The values calculated by
computeMatrix are not changed.

Definitely check the example at the bottom of the page to get a feeling for how many things you can tune.

profiler
This tool plots the average enrichments over all genomic regions supplied to computeMarix. It is a very useful complement to the heatmapper,
especially in cases when you want to compare the scores for many different groups. Like heatmapper, profiler does not change the values that
were compute by computeMatrix, but you can choose between many different ways to color and display the plots.

Example figures
Here you see a typical, not too pretty example of a heatmap. We will use this example to explain several features of computeMatrix and
heatmapper, so do take a closer look.

Heatmap with all genes scaled to the one size and user-specified groups of genes

The plot was produced with the following commands:

$ /deepTools-1.5.2/bin/computeMatrix scale-regions --regionsFileName Dm.genes.indChromLabeled.bed \
--scoreFileName PolII.bw --beforeRegionStartLength 500 --afterRegionStartLength 500 \
--regionBodyLength 1500 --binSize 10 --outFileName PolII_matrix_scaledGenes \
--sortRegions no
$ /deepTools-1.5.2/bin/heatmapper --matrixFile PolII_matrix_scaledGenes \
--outFileName PolII_indChr_scaledGenes.pdf --plotTitle "Pol II" \
--whatToShow "heatmap only"

As you can see, all genes have been scaled to the same size and the (mean) values per bin size (10 bp) are colored accordingly. In addition to the
gene bodies, we added 500 bp up- and down-stream of the genes.

This is what you would have to select to achieve the same result within Galaxy:

computeMatrix

https://raw.github.com/fidelram/deepTools/master/examples/visual_hm_DmelPolII.png

https://raw.github.com/fidelram/deepTools/master/examples/visual_computeMatrix01.png

heatmapper

https://raw.github.com/fidelram/deepTools/master/examples/visual_computeMatrix02.png

main difference between computeMatrix usage on the command line and Galaxy: the input of the regions file (BED)

Note that we supplied just one BED-file via the command line whereas in Galaxy we indicated three different files (one per chromosome).

On the command line, the program expects a BED file where different groups of genomic regions are concatenated into one file, where the
beginning of each group should be indicated by "#group name".
The BED-file that was used here, contained 3 such lines and could be prepared as follows:

https://raw.github.com/fidelram/deepTools/master/examples/visual_heatmapper.png

 $ grep ^chr2 AllGenes.bed > Dm.genes.indChromLabeled.bed
 $ echo "#chr2" >> Dm.genes.indChromLabeled.bed
 $ grep ^chr3 AllGenes.bed >> Dm.genes.indChromLabeled.bed
 $ echo "#chr3" >> Dm.genes.indChromLabeled.bed
 $ grep ^chrX AllGenes.bed >> Dm.genes.indChromLabeled.bed
 $ echo "#chrX" >> Dm.genes.indChromLabeled.bed

In Galaxy, you can simply generate three different data sets starting from a whole genome list by using the "Filter" tool three times:

1. c1=="chr2" --> Dm.genes.chr2.bed
2. c1=="chr3" --> Dm.genes.chr3.bed
3. c1=="chrX" --> Dm.genes.chrX.bed

Important parameters for optimizing the visualization

1. sorting of the regions: The default of heatmapper is to sort the values in descending order. You can change that to ascending, no sorting
at all or according to the size of the region (Using the --sort option on the command line or advanced options in Galaxy). We strongly
recommend to leave the sorting option at "no sorting" for the initial computeMatrix step.

2. coloring: The default coloring by heatmapper is done using the python color map "RdYlBu", but this can be changed (--colorMap on the
command line, advanced options within Galaxy).

3. dealing with missing data: You have certainly noticed that some gene bodies are depicted as white lines within the otherwise colorful
mass of genes. Those regions are due to genes that, for whatever reason, did not have any read coverage in the bigWig file. There are
several ways to handle these cases:

--skipZeros this is useful when your data actually has a quite nice coverage, but there are 2 or 3 regions where you deliberately
filtered out reads or you don't expect any coverage (e.g. hardly mapable regions). This will only work if the entire region does not
contain a single value.
--missingDataAsZero this option allows computeMatrix do interpret missing data points as zeroes. Be aware of the changes to the
average values that this might cause.
--missingDataColor this is in case you have very sparse data or were missing values make sense (e.g. when plotting methylated
CpGs - half the genome should have no value). This option then allows you to pick out your favorite color for those regions. The
default is black (was white when the above shown image was produced).

Summary plots

Here's the profiler plot corresponding to the heatmap above. There's one major difference though - do you spot it?

We used the same [BED][] file(s) as for the heatmap, hence the 3 different groups (1 per chromosome). However, this time we used
computeMatrix not with scale-regions but with reference-point mode.

$ /deepTools-1.5.2/bin/computeMatrix reference-point --referencePoint TSS \
--regionsFileName Dm.genes.indChromLabeled.bed --scoreFileName PolII.bw \
--beforeRegionStartLength 1000 -afterRegionStartLength 1000 \
--binSize 10 --outFileName PolII_matrix_indChr_refPoint \
--missingDataAsZero --sortRegions no
$ /deepTools-1.5.2/bin/profiler --matrixFile PolII_matrix_indChr_refPoint \
--outFileName profile_PolII_indChr_refPoint.pdf --plotType fill \
--startLabel "TSS" --plotTitle "Pol II around TSS" \
--yAxisLabel "mean Pol II coverage" --onePlotPerGroup

When you compare the profiler commands with the heatmapper commands, you also notice that we made use of many more labeling options
here, e.g. --yAxisLabel and a more specific title via -T

This is how you would have obtained this plot in Galaxy (only the part that's different from the above shown command for the scale-regions
version is shown):

computeMatrix

https://raw.github.com/fidelram/deepTools/master/examples/visual_profiler_DmelPolII.png
https://raw.github.com/fidelram/deepTools/master/examples/visual_computeMatrix03.png

profiler

Heatmap with all genes scaled to the one size and kmeans clustering

Instead of supplying groups of regions on your own, you can use the clustering function of heatmapper to get a first impression whether the
signal of your experiment can be easily clustered into two or more groups of similar signal distribution.

Have a look at this example with two clusters:

https://raw.github.com/fidelram/deepTools/master/examples/visual_profiler_Gal.png

The plot was produced with the following commands:

$ /deepTools-1.5.2/bin/computeMatrix reference-point -regionsFilenName Dm.genes.indChromLabeled.bed \
 --scoreFileName PolII.bw --beforeRegionStartLength 500
\--afterRegionStartLength 500 --binSize 50 \
--outFileName PolII_matrix_TSS
$ /deepTools-1.5.2/bin/heatmapper --matrixFile PolII_matrix_TSS --kmeans 2 \
--outFileName PolII_two_clusters.pdf --plotTitle "Pol II" \
--sortUsing region_length --whatToShow "heatmap only"

When the --kmeans option is chosen and more than 0 clusters are specified, heatmapper will run the [k-means][] clustering algorithm. In this
example Drosophila m. genes were divided into two clusters separating those genes with Pol II at the promoter region (top) from those genes
without Poll II at the promoter (bottom).
Please note that the clustering will only work if the initial BED-file used with computeMatrix contained only one group of genes (i.e. all genes,
without any hash tags separating them)

The genes belonging to each cluster can be obtained by via --outFileSortedRegions on the command line and "advanced output options in
Galaxy". On the command line, this will result in a BED file where the groups are separated by a hash tag. In Galaxy, you will obtain individual
data sets per cluster.

To have a better control on the clustering it is recommended to load the matrix raw data into __specialized software like cluster3 or R. You can
obtain the matrix via the option --outFileNameMatrix on the command line and by the "advanced output options" in Galaxy. The order of the
rows is the same as in the output of the --outFileSortedRegions BED file.

Glossary

https://raw.github.com/fidelram/deepTools/master/examples/heatmaps_kmeans_Pol_II.png

Like most specialized fields, next-generation sequencing has inspired many an acronym. We are trying to keep track of those abbreviations that
we heavily use. Do make us aware if something is unclear: deeptools@googlegroups.com

If you are unfamiliar with the file formats of next-generation sequencing data, do have a look down below.

Abbreviations

Acronym full phrase Synonyms/Explanation

-seq -sequencing indicates that an experiment was completed by DNA sequencing using NGS

ChIP-seq
chromatin immunoprecipitation
sequencing

NGS technique for detecting transcription factor binding sites and histone
modifications

DNase deoxyribonuclease micrococcal nuclease

HTS high-throughput sequencing
next-generation sequencing, massive parallel short read sequencing, deep
sequencing

MNase micrococcal nuclease DNase

NGS next-generation sequencing
high-throughput (DNA) sequencing, massive parallel short read sequencing,
deep sequencing

File Formats
Data obtained from next-generation sequencing data must be processed several times. Most of the processing steps are aimed at extracting only
those information that are truly needed for a specific down-stream analysis and to discard all the redundant entries. Therefore, specific data
formats are often associated with different steps of a data processing pipeline. These associations, however, are by no means
binding, but you should understand what kind of data is represented in which data format - this will help you to select the correct tools further
down the road.

Here, we just want to give very brief key descriptions of the file, for elaborate information we will link to external websites. Be aware, that the
sorting here is purely alphabetically, not according to their usage within an analysis pipeline that is depicted here:

mailto:deeptools@googlegroups.com

BAM

binary file format (complement to SAM)
contains information about sequenced reads after alignment to a reference genome
each line = 1 mapped read, with information about:

its mapping quality (how certain is the read alignment to this particular genome locus?)
its sequencing quality (how well was each base pair detected during sequencing?)
its DNA sequence
its location in the genome
etc.

highly recommended format for storing data
to make a BAM file human-readable, one can, for example, use the program samtools view (from UCSC tools)
for more information, see below for the definition of SAM files

bed

text file
used for genomic intervals, e.g. genes, peak regions etc.
actually, there is a rather strict definition of the format that can be found at UCSC
for deepTools, the first 3 columns are important: chromosome, start position of the region, end position of the genome

bedGraph

text file
similar to bed file, except that it can ONLY contain 4 columns and 4th column MUST be a score
again, read the UCSC description for more details

bigWig

binary version of a bedGraph file

https://raw.github.com/fidelram/deepTools/master/examples/flowChart_FileFormats.png
https://genome.ucsc.edu/FAQ/FAQformat.html#format1.8

usually contains 4 columns: chromosome, start of genomic bin, end of genomic bin, score
the score can be anything, e.g. an average read coverage
UCSC description for more details

FASTQ

text file
contains raw read information (e.g. base calls, sequencing quality measures etc.), but not information about where in the genome the read
originated from

SAM

should be the result of an alignment of sequenced reads to a reference genome
each line = 1 mapped read, with information about its mapping quality, its sequence, its location in the genome etc.
it is recommended to generate the binary (compressed) version of this file format: BAM
for more information, see the SAM specification

https://genome.ucsc.edu/FAQ/FAQformat.html#format6.1
http://samtools.sourceforge.net/SAMv1.pdf

	deepTools
	Table of content
	Why we built deepTools
	How we use deepTools
	deepTools details

	QC of aligned reads
	bamCorrelate
	What it does
	Important parameters
	Output files:
	Example Figures

	computeGCbias
	What it does
	Output files
	What the plots tell you
	Example figures

	bamFingerprint
	What it does
	Output files:
	What the plots tell you
	Example figures

	Normalization of BAM files
	Table of Content
	CorrectGCbias
	What it does (uses output from computeGCbias)
	output

	bamCoverage
	What it does
	output
	Usage

	bamCompare
	What it does
	output file
	Usage
	Some (more) parameters to pay special attention to

	Visualization
	computeMatrix
	Output files

	heatmapper
	profiler
	Example figures
	Heatmap with all genes scaled to the one size and user-specified groups of genes
	computeMatrix
	heatmapper
	main difference between computeMatrix usage on the command line and Galaxy: the input of the regions file (BED)
	Important parameters for optimizing the visualization

	Summary plots
	computeMatrix
	profiler

	Heatmap with all genes scaled to the one size and kmeans clustering

	Glossary
	Abbreviations
	File Formats
	BAM
	bed
	bedGraph
	bigWig
	FASTQ
	SAM

